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the Transputer & me …

• I‘ve graduated 1984 at TU Ilmenau,
• my Diploma thesis was about „the formal Petri-Net 

description and programming of a real time 
operating system kernel for embedded
applications “ @ Z80 (8bit CPU).

• Same time the Transputer appeared!
• AMAZING !! Realtime in Silicon !

• No wonder that I liked to read such papers all over the years…

• Since 2006 I‘m collecting Transputer infos & artefacts for their
revitalization ☺ … Your questions? � uwe.mielke@infineon.com

� Target for next 60 Min.s: …give you an idea about the
impressive capabilities of the Transputer Architecture…

“The Inmos Transputer was more than a family of processor 
chips; it was a concept, a new way of looking at system design problems. In 
many ways that concept lives on in the hardware design houses of today, using 
macrocells and programmable logic. New Intellectual Property (IP) design houses 
now specialise in the market the transputer originally addressed, but in many 
cases the multi-threaded software written for that hardware is still designed and 
written using the techniques of the earlier sequential systems.”

[Co99] The Legacy of the transputer – Ruth IVIMEY-COOK, Senior Engineer, ARM Ltd, 90 
Fulbourn Road, Cherry Hinton, Cambridge – in: Architectures, Languages and Techniques , B. M. Cook(ed.) 
IOSPress, 1999
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1. Introduction

Supercomputer zum Anfassen …

… heute (seit 2004) im Heinz Nixdorf Computer 
Museumsforum in Paderborn.

Das System hatte zwölf Jahre (1992-2004) im PC2

(Paderborn Center for Parallel Computing) bis 
zuletzt treue Dienste geleistet. 
1992 stand der Parsytec-GC auf Platz 259 in der 
Liste der Top500 Supercomputer. 
Die Rechenleistung der 1024 Transputer à 30 MHz 
mit je 4,4 MFLOP/s, also insgesamt etwa 4,5 
GFLOP/s, wird heutzutage von jedem bessern 
Laptop erreicht -- der GC benötigte dafür ein 
Gehäuse von 2,6 m Höhe und 2,53 m Breite.

c‘t Nov.2004

GigaCluster



1.1 the IBM PC Era
technical Trends ~ 198x

year size(Mb) cyc time

1980 0.0625 250 ns

1983 0.25 220 ns

1986 1 190 ns

1989 4 165 ns

1992 16 145 ns

1996 64 120 ns

2000 256 100 ns

2003 1024 60 ns

1981: IBM-PC, i8088, 4.77MHz, 512kB RAM, price: 5000US$ 

1984: PC-AT, i286, 6MHz, 640kB RAM, 20MB HDD, price: 4000US$

1985: C++ object oriented Language came up…

1987: IBM/PS2, i386, 16MHz, 4MB RAM, 40MB HDD, price: 3000US$

1989: i486 & i860 released same time…

1990: Windows 3.0 released (on top of MS-DOS 6.2)

INMOS Ltd.

INMOS COMPANY HISTORY
1978 founded as UK (Labour-)Government owned Memory Company, 
development of Memory Products (SRAM, DRAM) w/ great market success

1980 development of Occam Progr.Language based on C.A.Hoare‘s CSP Theory

1983 development of the 1st Occam based 32bit Transputer successfully finished

1984 T414 (15MHz) released to the market, Occam as assembly language
1985 over 150 1st class Patents about Semiconductor Manufacturing and 
Computer Engineering show strong INMOS � e.g. 100% patent exchange
agreement w/ IBM

1985 1st privatization � Thorn EMI Industries Ltd. (by M.Thatcher Government 
for cash … no further investments nor subsidaries)

1986 US Memory Fab reliability Crisis � US Mgmt. fired, due to financial
problems the Bristol development headcount has to be cut down by 50%

1987 Development of IEEE754 64bit FPU successfully finished (ESPRIT 
founded)
1988 T800 (20MHz) released to the market

1989 2nd privatization � ST Micro

1990 ESPRIT project to develop next generation transputer and router chips

1993 shut down of T9000 (out of order execution) after 3 yrs development
1995 the ST20450 (40MHz) was released

1998 ST Micro announced the closure of Transputer production.

2009 ST20 (200+MHz) widely used in ST Micro set top box products (STi51xx) 



1.2 Transputer Foundations
CSP & Occam

Communicating Sequential Processes (CSP) …
• was first described in a 1978 paper by C. A. R. Hoare. It evolved further in parallel 

with the development of Occam at INMOS.
• The full theoretical version of the CSP calculus was initially presented from in a 

1984 article by Brookes, Hoare, and Roscoe, and later in Hoare's book
Communicating Sequential Processes, which was published in 1985. 

OCCAM as Programming Language …
• was developed by David May at INMOS ~1980 together with the University of 

Oxford (C.A.R. „Tony“ Hoare) in terms of formal and provable correctness.

Example: 
(Note: the behaviour of these two programs is identical … formal correct transformation is possible and can be 

proven)
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1.2 Transputer Foundations
Occam

Statements:

• A Process is a piece of code having an Input and providing an Output.
• Processes communicate by Point-to-Point Messages (1…n Bytes) via Channels.
• A Channel is an Address in Memory on the same … or another Transputer.
• A Channel between 2 Transputers is formed by a serial Link. The Link will automatically drop 

(„DMA“) the Message in the memory of the other Transputer.
• Communication will be synchronized, i.e. when sender AND receiver both are ready. The

Process which is ready for Communication first … has to wait for its partner. 
• The programmer has not to take care about how Messages are transfered !

• Process execution on Transputers is Event-driven, i.e. Processes which are waiting for an 
Event do not consume any processor time. Events can be caused by Communication, 
Timer-Setup or extenal Interrupt(s).

• Occam provides all necessary primitives for Process Syncronization (incl. Start, End, 
Alternative, …) and Process Communication.

• The programmer should focus on his Program Structure & Algorithms ! 

ieee-1985  the transputer – INMOS: 

The architecture of the transputer is defined by reference to occam. Occam
provides the model of concurrency and communication for all transputer systems. 
Defining the architecture at this level leaves open the option of using different 
processor designs in different transputer products. This allows implementations
which are optimized for different purposes. It also allows implementations to 
evolve with changes in technology, without compromising the standards
established by the architecture.

A transputer contains memory, a processor and a number of standard point-to-
point communication links which allow direct connection to other transputers.

In the transputer architecture, the exploitation of a high degree of concurrency is
made possible through a decentralized model of computation, in which local
computation takes place on local data, and concurrent processes communicate
by passing messages on point to point channels.



1.2 Transputer Foundations
Occam

• OCCAM enables a system to be described as a collection of concurrent processes, which
communicate with each other through channels. 

• OCCAM programs are built from three primitive processes:
– x := exp assign expression exp to variable x
– ch1 ! exp output expression exp to channel ch1
– ch2 ? x input from channel ch2 to variable x

• The primitive processes are combined to form constructs:
– SEQ uential execute processes one after another
– PAR allel execute processes concurrently
– ALT ernative execute only the first ready process

• IF and WHILE and CASE constructs are also provided. 

• A construct is itself a process, and may be used as a component of another construct. 

(see Links for free download in Appendix)



1.2 Transputer Foundations
CSP & Occam

Communication via Channels in Occam …
• can be between 2 processes on the same transputer or between 2 processes on 

different transputers, 
• looks for the programmer all like the same (fully transparent),
• is synchronized, i.e. if sender and receiver both are ready the communication

takes place.

Transputer

Process 1

Process 2 Process 1 Process 2
Link

TransputerTransputer

Channel



1.2 Transputer Foundations
Persona

„…what they all wanted was a new simplicity in computers , in their structure and in 
the languages used to program them. In this context simpl icity need not be the enemy
of performance.“

[LR85] M.McLean and T.Rowland „The Challenge of the Transputer“, 

Chapter 9 from „THE INMOS SAGA - A Triumph of National Enterprise?“, © 1985

Tony (C.A.R.) Hoare (born 11.Jan.1934) 

Quicksort algorithm originator. Since 1977 
Professor of Computer Science at University 
of Oxford … today Fellow at Microsoft

David May (born 24.Feb.1951)

Joined 1978 INMOS microcomputer
architecture team, since 1995 Prof. of 
Computer Science at Bristol Uni, 2006 
Co-Founder of XMOS, CTO.

Iann Barron (born in June 1936)

Developed several Mini Computers, 
including the „Modulat-One“. Visioneer
and entrepreneur, initial founder of INMOS 
and CEO. 

William of Ockham (1287-1347):
"Entities should not be
multiplied unnecessarily.„
� keep it simple !
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1.3 T414 
Birthday 1983

Technology: 1.5µm CMOS
Clock (int.): 15…20MHz
Chip Size: 8.5 x 8.3mm²
Power Supply : +5V ±±±±5%
Packaging: CPGA 84 
Production: 1985
Price (1886): ???

32bit Memory Interface

LINKS :

4xDMA     4xSerDes

CPU:

32bit 
Registers 

ALU
RAM:

4kByte

M
ic

ro
C

od
e

R
O

M

1982 : the „Simple-42“ design completed
1983 : successfully 1st prototyping of T414A
1984 : redesign T414B (2 bugfixes)
1985 : volume production

Originally the plan was to make the transputer cost only a few dollars per unit. 
Inmos saw them being used for practically everything, from operating as the main 
CPU for a computer to acting as a channel controller for disk drives in the same 
machine. Spare cycles on any of these transputers could be used for other tasks, 
greatly increasing the overall performance of the machines.

Even a single transputer would have all the circuitry needed to work by itself, a 
feature more commonly associated with microcontrollers. The intention was to 
allow transputers to be connected together as easily as possible, without the 
requirement for a complex bus (or motherboard). Power and a simple clock signal 
had to be supplied, but little else: RAM, a RAM controller, bus support and even 
an RTOS were all built in.

The occam language [xx] allows a system to be hierarchically decomposed into a 
collection of concurrent processes communicating via channels. 

An occam program can be implemented by a single Transputer, or by a 
collection of Transputers each executing one or more occam processes.

… but the British designers were only to receive three batches of working silicon
prototypes of the transputer during 1983.

Finally production start was 1985 in Bristol … compeeting with the start of  intel
386 and Motorola 68000



2. Transputer Architecture

D.May:  „Occam and the Transputer are designed for each other. The
mathematical formalism of Occam provides the concurrency- and communication-

model for the Transputer‘s hardware“
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2.1 Hardware
T800, T805

32bit Memory Interface

LINKS :

4xDMA     4xSerDes

CPU:

32bit 
Registers

ALU
RAM:

4kByte

M
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C
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R
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M
M
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ro

C
od

e
R

O
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LINKS :

4xDMA     4xSerDes

FPU:
Mantissa ALU               Exp.
64bit Registers             ALU
normalizing Shifter

E
-M

ic
ro

C
od

e

M
-M

ic
ro

C
od

e

Technology: 1.5µm CMOS
Clock (int.): 20MHz
Chip Size: 8.5 x 10.7mm²
Power Supply : +5V ±±±±5%
Packaging: CPGA 84 
Production: 1988
Price (Nov.1988): 1042,25 DM

32 bit architecture

50 ns internal cycle time (20 MHz)

20 MIPS (peak) instruction rate

2.8 Mflops (peak) instruction rate
Pin compatible with IMS T4xx

Debugging support

64 bit on-chip floating point unit which conforms to IEEE 754

4 Kbytes on-chip static RAM

120 Mbytes/sec sustained data rate to internal memory
4 Gbytes directly addressable external memory

26.7 Mbytes/sec sustained data rate to external memory

950 ns response to interrupts

Four INMOS serial links 5/10/20 Mbits/sec
Bi-directional data rate of 2.4 Mbytes/sec per link

High performance graphics support with block move instructions

Boot from ROM or communication links

Single 5 MHz clock input

Single +5V 5% power supply
Packaging 84 pin PGA / 100 pin CQFP



2.1 Hardware 
T805 Block Diagram

• 32bit CPU + 64bit  FPU
• most instructions only 1 clock
• included: Process Scheduler w/ 

internal Communication
Channels, Links and Timers.

• included: 4KByte SRAM, one
clock cycle access time, register
like quality.

• included: Memory Interface
(programable) for easy to use
RAS+CAS generation and direct
connection of 8…16 dRAM
Devices, full 4GByte Address
Space.

• Event -Handler for fast, 
deterministic Interrupt response
time: 950ns@20MHz



2.1 Hardware Details
CPU:  Registers

The CPU contains:

• sequential 32bit Integer Processor
• (micro-coded) Scheduler & Timers
• Event Logic

Processor Registers:

• Evaluation Stack (RPN) : Areg , Breg , Creg
• Workspace Pointer: Wptr
• Instruction Pointer: Iptr
• Operand Register: Oreg
• Flags: Error, HaltOnError, BreakEnable

• Internal Registers: Dreg, Ereg, StatusReg

Scheduler and Timer Registers
• Front- and Back-Pointers of high and low priority

process queues: FptrX , BprtX
• Timer Counter (actual) and Timer Next Event 

Registers for high and low priority process queues: 
ClockRegX, TNextX.

• Timer Queue Pointers: TPtrLocX (* in Memory)

Ereg

Dreg

StatusReg

MSB                        LSB

Iptr

Wptr

Oreg

Fptr0

Bptr0

TNextR0

ClockReg0

TPtrLoc0 *

Fptr1

Bptr1

TNextR1

ClockReg1

TPtrLoc1 *

HaltOnErrorFlag

ErrorFlag

BreakEnableFlag

Processor Registers

Scheduler and Timer Registers

Areg

Breg

Creg

Areg

Reverse Polish Notation

DregWptr
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2.2 Instruction Set
Format

Instruction Format:
• 8 bit Op-Codes – very compact !
• Reason: due to statistics … 70% of all 

program code consist of load and store
instructions with almost small operands.

• 4 bit Function Code = 16 instructions
• 4 bit Data Part … values #0…#F
• Function Code #F (operate) uses Data  as 

function as well � +15 instructions
• 2 Functions Codes (Pfix , NFix ) are used to 

extend Data Part w/ Oreg …
– up to 32bit (for function #0…#E) as 

direct operand
– up to 8…12bit (for function #F) as 

OpCode for further instructions

Function

7     … 4   3     … 0

Data

#F

7     … 4   3     … 0

OpCode

#2 Data

#6 Data

operate

pfix

nfix

All transputers share the same basic instruction set. It contains a small number of 
instructions, all with the same format, chosen to give a compact representation of 
the operations most frequently occuring in programs. Each instruction consists of 
a single byte divided into two four bit parts.

The four most signicant bits are a function code, and the four least signicant bits
are a data value. The sixteen functions include loads, stores, jumps and calls and 
enable the most common instructions to be represented in a single byte.

As this encoding permits only 4 bits of operand per instruction two of the function
codes (prex and negative prex) are used to allow the data part of any instruction
to be extended in length. 

Another of the sixteen functions (operate) treats its data portion as an operation
on values held in the processor registers. This allows up to 16 such operations to 
be encoded in a single byte instruction.



2.2 Instruction Set
Overview

The T414 has 100 instructions which can be grouped as follows [LM92]:
• 16 addressing and memory access instructions
• 6 branching and program control
• 41 arithmetic and logical
• 12 process scheduling and control
• 16 inter-process communication
• 9 miscellaneous
Only 4 Addressing Modi:
• immediate … constant is part of instruction (ldc := load constant)
• register-direct … register-to-register (e.g. within evaluation stack, …)
• register-indirect … address in register (either Wptr or Areg)
• register-relative … address and displacement in registers (Wptr and Areg)
• There are two ways of addressing memory, namely to specify the address as a fixed offset

from the address in the workspace pointer (Wptr) or the A register. 
The T805 has 167 instructions, additionally are:
• 50 FPU instructions
• Special instructions … like 2D move for graphics applications
• Test & Analyze Support (j#0)



2.1 Hardware Details
CPU:  Wptr, Iptr, Oreg

Iptr

Wptr

Oreg

Program:

#7FFFFFFF

Registers are related to running Process
(process which is consuming CPU time)

Instruction Pointer: Iptr
• points to next instruction to be executed
Workspace Pointer: Wptr
• points to Workspace of running process

•• Wptr+0 Wptr+0 …… Wptr+xWptr+x for Program-Use
(very fast access to lower 16 words,
4kB SRAM w/ Register Quality!)

•• WptrWptr--1 1 ……WprtWprt--55 for Process-Use

• Operand Register: Oreg
• used to extend the size of Operands (4bit 

…8…12…16…20…24…28…32bit) 
• necessary to build more instruction codes by

use of Prefixes

Locals:

index3 

address2 

variable1 

IPOINT

NEXTP

BUFADDR 

TIME

#80000000 

+3

+2

+1

+0 

-1 

-2 

-3

-4

-5



2.1 Hardware Details
CPU:  Address Space

Address Space:

• highest: MostPos (most positive Integer)

• lowest: MostNeg (most negative Integer)

• totally little Endian Bit, Byte and Word Order
• single Byte Write is possible (Byte-Selector)

• Read always 32bit Word-wise (aligned)

• internal RAM at lowest Addresses

Reserved Locations:
• Channel Control Words for Link 0-3
• Channel Control Word for Event channel

• Pointers to begin of high and low priority Timer
queues: TPtrLocX

• Interrupt Save Location for (low Priority) 
processor status, in case of a high priority
process is interrupting a low priority process.

• Reserved for extended Functions means: this
area will be temporarily used by the processor
during execution of 2D block move instructions, 
i.e. do not modify! 

Machine Map Byte address Word Occam Map
offset

Reset Instr. #7FFFFFFE
#7FFFFFF8
#7FFFFF6C

#00000000

#80001000 Start of ext.Memory #0400

#80000070 MemStart (int.RAM) #1C
Reserved  #8000006C

for
extended functions #80000048
ERegIntSaveLoc #80000044

STATUSIntSaveLoc #80000040
CRegIntSaveLoc #8000003C
BRegIntSaveLoc #80000038
ARegIntSaveLoc #80000034
IptrIntSaveLoc #80000030

WdescIntSaveLoc #8000002C
TPtrLoc1 #80000028
TPtrLoc0 #80000024

Event #80000020 #08 Event
Link 3 Input #8000001C #07 Link 3 Input
Link 2 Input #80000018 #06 Link 2 Input
Link 1 Input #80000014 #05 Link 1 Input
Link 0 Input #80000010 #04 Link 0 Input

Link 3 Output #8000000C #03 Link 3 Output
Link 2 Output #80000008 #02 Link 2 Output
Link 1 Output #80000004 #01 Link 1 Output
Link 0 Output #80000000 (Base of memory) #00 Link 0 Output



Link 3 Out

2.1 Hardware Details
Links: Registers 

Transputers can be connected by their Links.

Each serial Link has an Input & an Output channel: 

• Channel : channel control word � reserved location
in memory (contains either Wdesc of related
Process or „not.process“)

• CountReg : no. of bytes to transfer / receive
• PtrReg : Source Address of data for output / 

Destination Address for data to input

• DBuffReg: 32bit Data (4 Byte) buffer

• Shift-Register (8bit): bytewise load, bitwise shift out 
/ in of data

PtrReg

CountReg

DBuffReg

Channel *

Shift-Register

Link 3 In

PtrReg

CountReg

DBuffReg

Channel *

Shift-Register

#7FFFFFFF

TPtrLoc1 

TPtrLoc0 

Event 

Link 3 In

Link 2 In 

Link 1 In

Link 0 In 

Link 3 Out 

Link 2 Out

Link 1 Out

Link 0 Out 

#02

#01

#00  

Memory:

2nd 
Transputer



2.1 Hardware Details
Links: Protocol

Each communication channel requires that all 4 input and output lines of the
respective Links are connected.

Simple Link Protocol:
• 2 Start-Bits
• 8 Data-Bits
• 1 Stop-Bit

Each transfered Byte has to be confirmed by:
• 2 Acknowledge-Bits



2.3 Process Model 
State Transitions (simplyfied)

At any time, a concurrent process may be
active
• being executed (running)

• on a list awaiting execution
inactive
• ready to input
• ready to output
• waiting until a specified time

(active)
running

(active)
sleeping

(inactive) waiting for time 
or reday to input or output



2.3 Process Model 
Wptr & Workspace Descriptor

• Wptr: Workspace-Adress
• Wptr � lowest 2 bits always Zero !
• Wdesc: Workspace Descriptor

• Wdesc = Wptr + LSB for Process for Priority
used as „Idendity-Card“ of process … in case process
is waiting for an event (e.g. in Channel Control Word), 
tells the CPU which priority the process in the channel
contol word has to run

Note: Wptr of actual running process is stored in CPU 
and

process priority is known to CPU-Status

Locals:

IPOINT

NEXTP 

#80000000 

+3

+2

+1

+0 

-1 

-2 

-3 

-4 

-5 Wptr

MSB                        LSB

#A #1#A #5#A #5#A #5

7     … 4   3   2  1   031   … 28   27   … 24



24

2.3 Process Model 
Wptr & Process Status

• Process Status (Wdesc) is needed for pre-emptive
Multitasking:
Wptr (+Prio) is Id-card of process !

In case a Process becomes descheduled … the
Locations below Wptr are used as follows:

• -1 IPOINT: points to next instruction of a 
descheduled Process, i.e. form here the process
can be continued

• -2  NEXTP: points to Wptr of next Process, if in lo/hi
Prio Process Queue (active-waiting)

• -3  BUFADDR : used during channel
communication, points to data to be transferred

• -4  TLINK: points to Wptr of next Process, if in lo/hi
Prio Timer Queue (-or- … TALT Flag)

• -5  TIME: time value the process is waiting for, if in 
lo/hi Prio Timer Queue

Locals:

index3 

address2 

variable1 

IPOINT

NEXTP

BUFADDR 

TLINK 

TIME

#80000000 

+3

+2

+1

+0 

-1 

-2 

-3

-4

-5

Wptr

Channel *

The least significant bit instead is used to store the process priority, which is 0 for
a high priority and 1 for a low priority. This combination of the workspace address
and the priority bit is referred to as the process descriptor. 

A few words of memory just below the workspace pointer are used by various
parts of the scheduling hardware as follows (relative to address pointed to by
Wptr) :

-1 holds the IPtr of a descheduled process

-2 maintain a list of active but descheduled processes.

-3 Used during channel communication to hold the address of the data to be
transferred.

-4 flag used during timer ALTs to indicate a valid time to wait for.

-5 used during time ALTs to hold a time to wait for.



2.3 Process Model 
Process Queues

• 2 Process Queues : one for high 
priority and one for low priority
processes

• Queues are organized as linked List‘s, 
Fptr is pointing to top of queue and 
Bptr to bottom of queue, i.e.:

• Fptr contains Wdesc of next process
to become scheduled

• Bptr contains Wdesc of last process
which has been descheduled

• The linked list is organized via Wptr-2 
of each process in queue



2.3 Process Model 
Timer Queues

• 2 Timer Queues : one for high priority and one for
low priority processes, organized as linked List‘s, 
TPtrLoc is containing the Wdesc of the process, 
which is next to be waked up

High priority Timer: 
• one increment (tick) every 1 µSec
Low priority Timer: 
• one increment (tick) every 64 µSec
• If a low prio process exceeds his general time slot

of 1 Millisecond it will be descheduled during next
timeslot

Timer Registers Definitions:
• ClkReg +1 < Future < ClkReg + MostPos
• ClkReg > Past > ClkReg + MostNeg
• can be RESET or read … but not written

Workspace 
Process X

TPtrLoc1 +0
-1
-2
-3
-4
-5 300

Workspace 
Process Y

+0
-1
-2
-3
-4
-5 1000

MostNeg #80000000
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2.3 Process Model 
Descheduling Points

• in general all instructions run as „Atomic Operation“, i.e. only at dedicated
instructions (j, lend, in, out, outb, outw, altwt, taltw, tin), so called Descheduling
Points, the scheduler can put a low prio process to sleep, e.g. if the process has 
exceeded his 1ms time slot. 

• The (Occam-) Compiler has to avoid endless atomic operations, i.e. if there are no 
loops at all … then from time to time there may be a NOP-like descheduling
operation (j0) included

• Note: in case of Descheduling the registers and process Status will not be saved
… only Iptr! Above Descheduling instructions ensure, that the evaluation stack is
empty, all process owned variables and results have be saved in workspace
already. Therefore process switching time is incredible fast.

• A high prio process (e.g. ext. Event) allways can interrupt any running low prio
process. A reserved SRAM area will be used to store all registers & the processor
status. Interrupt response time is 19-58 clocks (due to the current running
instructions has to be completed first!), i.e. 0.95-2.9µs @20MHz.

A process (low or high priority) will be descheduled when one of the following conditions occur:

1) The process executes an instruction in order to communicate with another process.

2) The process executes the TIN (=Timer Input) instruction which causes it to wait until a specified

time. In the case of interprocess communication the process will then be put on the list of inactive

processes for that priority. Here the back-of-the-list pointer is used. One of the differences
between low- and high-priority processes is that low-priority processes must share the CPU (pre-
emptive multitasking). So, when the process is a low-priority process, there is another condition 
under which the process will be descheduled.

3) The low-priority process has used up all its time-slice.

Low priority processes are subject to round-robin scheduling with a time-slice period of

about 1 ms in a T800. But there is a limitation: descheduling due to the expiration of a time-slice
can only happen after the execution of certain instructions. These instructions are:

--- an unconditional jump (J; jump)

--- a special instruction which is very often used in loops (LEND; Loop End)

--- several others (e.g. 2D block move, …, sqrt)

As a result, a particular low-priority process which cleverly avoids these instructions can dominate
the other low-priority processes. On the other hand, the scheduler does not consume any CPU 
time for processes which are descheduled.



2.3 Process Model 
Events & Descheduling Points

For the Transputer everything of the following is an Event: 
• Timer Counter has reached a preset value
• Input communication request

• Output communication request
• external Event requires Interrupt
Channels are telling the system which process is related to which event.

� So events can be handled completely by Hardware & Microcode, i.e. they are full
transparent to the user.



2.4 System Services -in Arbeit-
Reset, Analyze, Boot

• No dedicated in-circuit Emulator required / avaliable at that time
• No MENTOR FastScan avail (intro 199x)
• The Analyze -Pin was used for Software Debugging, therefore exist …

2 Kinds of Reset: 
1.) Reset w/o Analyze = normal PwrUp … internal Status is „virgin“
2.) Reset w/ Analyze = Debug-Mode … internal Status is preserved, communication is

still completing, Processor halted awaiting Boot over Link 



2.4 System Services -in Arbeit-
Boot over Link

• Microcoded „Boot over Link “ Procedure:
1st Byte = #0 � poke Operation: read next 8 Byte as address + data to write
1st Byte = #1 � peek Operation: read next 4 Byte as address, output data

1st Byte > #2 � boot Operation: 1st Byte = number bytes (<256) to receive
...write these Bytes @MemStart into internal memory and 

…Start this as program (e.g. Bootloader for larger Programs)

• i.e. consequently this can be used:
… either for Booting a whole big big system over a Worm …
…or Software debug after Analyze+Reset to read/modify processor status

• Example: ispy protocol of a 4 Transputer System incl. Memory & Linkspeed

Using 150 ispy 3.23 | mtest 3.22
# Part rate Link# [ Link0 Link1 Link2 Link3 ] RAM,cycle
0 T800d-25 288k 0 [ HOST ... ... 1:0 ] 4K,1 1024K,3;
1 T425c-20 1.6M 0 [ 0:3 2:0 3:0 ... ] 4K,1 4092K,3.
2 T400c-20 1.7M 0 [ 1:1 ... ... ... ] 2K,1 1022K,3.
3 T400c-20 1.8M 0 [ 1:2 ... ... ... ] 2K,1 4094K,3.



3. Occam

„Barron, Hoare and May went 1980 to a hotel for a week-long brainstorming
session and returned with the specification for the new language.“

„Occam was just as revolutionary as any other aspect of the transputer. It was 
intended not just as a programming language but also as a means of describing
the structure of a computing system.“

[LR85] M.McLean and T.Rowland „The Challenge of the Transputer“, 
Chapter 9 from „THE INMOS SAGA - A Triumph of National Enterprise?“, © 1985



3. Occam as Assembly Language
Input & Output Example

• A very simple example of an occam program is the buffer process:.
WHILE TRUE

VAR ch:

SEQ

in ? ch

out ! ch

• Note : No Brackets! Indentation is used to indicate the program structure!
• The buffer consists of an endless loop, first setting the variable ch to a value from

the channel in, and then outputting the value of ch to the channel out. The
variable ch is declared by VAR ch. 

• The direct correspondence between the program text and the pictorial
representation is a useful starting point in the design of an efficiently
implementable concurrent algorithm.



3. Occam as Assembly Language
internal Channel Comm 1/4

• A Channel is a word in memory = 
Channel Control Word

• The channel can be marked as 
unused (empty) by a descriptor
„no.process“ = #80000000

� a channel is a semaphore

1. Begin of a Communication
• For input or output operation the

CPU registers are:
• Areg :  message length in Byte
• Breg :  Channel Address
• Creg :  Pointer to Databuffer

• Example: Lets consider the 1st 
Process is ready for Output

1st Proc Wptr

#7FFFFFFF

NO.PROCESS

Areg

Breg

Creg

Areg

index3 

address2 

variable1 

BUFADDR 

#80000000 

+3

+2

+1

+0 

-1 

-2 

-3 

Message

Channel *



3. Occam as Assembly Language
internal Channel Comm 2/4

• If the Channel is empty, i.e.  
„no.process“ = #80000000, then
the 1st (Output) Process „knows“
he has to wait for the 2nd (Input) 
Process to become ready for
communication

2. Initialization of Communication
• 1st (Output) Process CPU 

registers will be written to:
• Areg :  message length in Byte …

will got lost � (i.e. 2nd (Input) 
Process will determine no. of 
Bytes later … if not matching …
then its programmers fault)

• Breg :  Channel Address, � 1st 
(Output) Process will write his 
Wdesc into the Channel

• Creg :  Pointer to Databuffer � will 
be written to own Wptr-3

• The 1st (Output) Process will now
be descheduled … w/o queing into
waiting list!

1st Proc Wptr

#7FFFFFFF

WDESC1ST

Areg

Breg

Creg

Areg

index3 

address2 

variable1 

BUFADDR 

#80000000 

+3

+2

+1

+0 

-1 

-2 

-3 

Message

Channel *



3. Occam as Assembly Language
internal Channel Comm 3/4

• If the 2nd (Input) Process
becomes ready for communication
… he will read the channel and 
detect his partner process is
already waiting for communication

3. Execution of Communication
• 2nd (Input) Process is reading

Wdesc = Wptr of 1st (Output) 
Process to find its data pointer @ 
Wptr-3 to read message…

• CPU registers of 2nd process:
• Areg :  message length in Byte …

will determine no. of Bytes now ☺

for data transfer
• Breg :  Channel Address, 
• Creg :  Pointer to own Databuffer

� here data will be written to now!

2nd Proc Wptr

#7FFFFFFF

WDESC1ST

Areg

Breg

Creg

Areg

index3 

address2 

variable1 

#80000000 

+3

+2

+1

+0 

-1 

-2 

-3 

Message

Channel *



3. Occam as Assembly Language
internal Channel Comm 4/4

• The 2nd (Input) Process will 
transfer data from 1st (Output) 
workspace into his workspace

4. Finish of Communication
• CPU registers of 2nd process:
• Areg :  message length in Byte …

will determine no. of Bytes now ☺

for data transfer
• Breg :  Channel Address, 
• Creg :  Pointer to own Databuffer

� here data will be written to !

After all data have been copied:
• The Wdesc of 1st (Output) 

process will be added to the list of 
waiting processes (�Bptr)

• channel will be set back to empty
� no.process = #80000000

• The 2nd (Input) process has 
finished communication and can
continue w/ next instruction

2nd Proc Wptr

#7FFFFFFF

NO.PROCESS

Areg

Breg

Creg

Areg

index3 

address2 

variable1 

#80000000 

+3

+2

+1

+0 

-1 

-2 

-3 

Message

Channel *



3. Occam as Assembly Language
internal Channel Comm …

• Example was about Output Process arrives first.
• What will happen if Input Process arrives first ?

???

• Answer: the same procedure!
• in this case the 2nd (Output) Process has to do the copy job …
• i.e. always the „last“ process of both communication partners determines the

number of bytes to be transfered.



3. Occam as Assembly Language
external Channel Comm

• (Link-)Channel is in reserved Memory area … process which arrives 1st has to wait
• Protocol: each received Byte will be acknowledged, but only if receiving process is ready!
• Sender can always send one (1st) Byte … but w/o acknowledge after … he has to wait!

Link 1 Out

PtrReg

CountReg

DBuffReg

Channel *

Shift-Register

Link 2 In

PtrReg

CountReg

DBuffReg

Channel *

Shift-Register

#7FFFFFFF

TPtrLoc1 

TPtrLoc0 

Event 

Link 3 In

Link 2 In 

Link 1 In

Link 0 In 

Link 3 Out 

Link 2 Out

Link 1 Out

Link 0 Out 

#02

#01

#00  

Memory:

2nd 
Transputer

#7FFFFFFF

TPtrLoc1 

TPtrLoc0 

Event 

Link 3 In

Link 2 In 

Link 1 In

Link 0 In 

Link 3 Out 

Link 2 Out

Link 1 Out

Link 0 Out 

#02

#01

#00  

Acknowledge
(can be send overlapped to data on channel)

1st 
Transputer

Link 1 In Shift-Register Link 2 Out Shift-Register

Data

ACKACK

Memory:

Communication Handshake



3. Occam as Assembly Language
further Constructs …

Further available Occam Constructs in Microcode are:
• PAR
• ALT
� These Constructs are more complicated, due to additional necessary counters for

all inclued processes. Furthermore constructs with Timer contribution have to be
considered different.

� Therefore … pls see literature for detailed descriptions.

End of Presentation.



4. Outlook

„An interesting observation was made that the programmer s with a 
background in hardware design fared better with the design of these highly
parallel systems than did those with a traditional compu ter science
background.“ the Legacy of the Transputer © 1999



4. Outlook
Discussion … missing Features

The Transputer is excellent for embedded (trusted) applications
General purpose use is handicaped by …
• No MMU (memory protection between different applications on same chip

impossible - but chip to chip 100% true)
• No more (finer grain) than two Priority Levels
• Virtual Channels (only in Software) to allow processor-independent process

placement & move (as well to speed up serial communication)

Some of this lacks have been overcome by the T9000 + C104 design.
• Unfortunately the T9000 ooO-design-issues could not be solved in time
• The complicated T9000 chip never became productive � with ist 10MHz
• Nevertheless a couple of MIMD machines (64 x T9000) have been built

(CERN, University of Kent) and are still running … ☺



4. Outlook
open topics…

Open Topics … which could not be covered in this presentation:
• Transputer Chip Family, Peripherals, C004: 32 Channel Link Switch
• Transputer modular Industry Standards: Boards & TRAMs
• Transputer Development Systems
• further Programing Languages
• Operating Systems
• Transputer Main Applications+Markets (AddOn Boards, embedded, MIMD)
• 2nd Generation Transputers + Routers:

– T9000, C104, the IEEE-1355 Spacewire Standard, IEEE-1394
– ST20450 (1995), ST20 embedded CPU (200+MHz) up today

• 3rd Generation Occam / CSP Languages
– Occam-Pi, Handel-C … HDLs for FPGA synthesis
– KrOC – Kent retargetable Occam Compiler

• Transputer Emulator
• Today‘s Transputers: www.xmos.com



Literature, Sources, Links

General+History

• Paper: [Co99] R.Cook „The Legacy of the Transputer“ – http://www.wotug.org/papers/IvimeyCook_W22.pdf
• Book: [LR85] M.McLean and T.Rowland „The Challenge of the Transputer“, Chapter 9 from „THE INMOS SAGA - A Triumph of National Enterprise?“, free download: 

http://www.transputer.net/fbooks/saga/saga.pdf
• Interview: Iann Barron, „Inmos and the Transputer“, Part1 & 2: http://www.cs.man.ac.uk/CCS/res/res32.htm#c & http://www.cs.man.ac.uk/CCS/res/res33.htm#c
• [GHS88] H.Grubmüller, H.Heller, K.Schulten, „Superrechner – eine Cray für Jedermann“, mc.88.11.048-064,  http://www.mpibpc.mpg.de/276339/paper_mc_1988.pdf
• [Me06] M.Helzle, „Transputer - das verkannte Genie“,  COMPUTERPRAXIS 21.Jul.2006, 

http://www.embedd.it/downloads/Transputer%20-%20das%20verkannte%20Genie%20Juli%202006.pdf
• [Wa03] Paul Walker „the Origins of SpaceWire“, 2003,  http://www.4links.co.uk/bibliography/Origins-of-SpaceWire-4Links-ESA-SpW-Conference-2003.pdf

Documentation

• Wikipedia: http://en.wikipedia.org/wiki/Transputer
• Documentation: www.tranputer.net (Website of Michael Brüstle) � INMOS Datasheets & Technical Notes 
• About Parallel: http://www.classiccmp.org/transputer/ (Ram Meenakshisundaram's Transputer Home Page) � Boards, Hardware, Software
• Intro: [St85] C.W.Strevens (INMOS), „the transputer“ IEEE 1995 
• Intro: [Mo97] T.Modi, „Parallel Processing using Transputers“, http://teknirvana.com/documents/Transputers.pdf
• Review: [LM92] J.deLeeuw, A.deMes,”Transputers - design and use as a building block” http://www.science.uva.nl/~mes/psdocs/transputers.ps.gz%E2%80%8E
• Book: [RS91] H.Reinecke, J.Schreiner, „Transputer-Leitfaden – Eine Einführung und umfassende Beschreibung“, C.Hanser München 1991, ISBN-3-446-16063-9
• Book: [Eb93] Heinz Ebert, „Transputer und Occam, Das Handbuch für Systementwickler“ Heise 1993, ISBN-3-88229-0005
• Book: John Roberts, „Transputer Assembly Programming” 1992 transbook, ISBN-10 0-442-00872-4, free download: http://www.transputer.net/iset/pdf/transbook.pdf
• Homepage of Transputer-Architekt David May: http://www.cs.bris.ac.uk/~dave/index.html
• Book: Networks, Routers and Transputers, http://wotug.ukc.ac.uk/docs/nrat/book.psz.tar free download (Postscript-Format)
• The Transterpreter Project: http://www.transterpreter.org/Transputer
• Transputer-Emulator: https://sites.google.com/site/transputeremulator/

CSP+Occam

• Book: [Ho85] C.A.R.Hoare „Communicating Sequential Processes“, 21jun2004, ISBN-01-31-53289-8, free download: http://www.usingcsp.com
• Booklet: [Hy95] D.C.Hyde, „Introduction to the Programming Language Occam”, free download: http://www.eg.bucknell.edu/~cs366/occam.pdf
• Book: [PM86] D.Pountain, D.May, „A Tutorial Introduction to Occam Programming“, MacGraw-Hill NewYork 1986, ISBN-0-632-01847-X
• Book: [PR87] D.Pointain, R.Rudolph, „Occam - das Handbuch – Anleitung zum Programmieren paralleler Rechnersysteme“, Heise 1987, ISBN-3-88229-001-3
• Software: KrOC – the Kent retatgetable Occam Compiler, http://www.cs.kent.ac.uk/projects/ofa/kroc/
• WoTUG-Archive: http://www.wotug.org/parallel/ - World Transputer User Group, Proceedings & Papers



Literature, Sources, Links

some unsorted Papers … Outlook

• Paper: [RWW91] H.Roebbers, P.Welch, K.Wijbrans, „A generalized FFT algorithm on transputers“, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.2284
• Paper: Towards concurrency - occampi on LEGO Mindstorm http://www.cs.kent.ac.uk/pubs/2004/2004/content.pdf
• Paper: Roger Heeley, “The Application of the T9000 Transputer at CERN“ (1995), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.7796
• Interview: [Pa00] Ian Page, „Software to Silicon with HandelC“, https://www.doc.ic.ac.uk/~wl/teachlocal/arch2/ianpint.pdf
• Announcement: [Gu09] Guildford (University of Surrey), “Formal Verification of an Occam-to-FPGA Compiler and its Generated Logic Circuits”, 

http://www.surrey.ac.uk/computing/news/events/2009/formal_verification_of_an_occamtofpga_compiler_and_its_generated_logic_circuits.htm
• The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software http://www.gotw.ca/publications/concurrency-ddj.htm
• The Landscape of Parallel Computing Research: A View From Berkeley http://view.eecs.berkeley.edu/wiki/Main_Page

INMOS-Patents _� www.patentgenius.com
• US-Pat-4730308  Interface between a computer bus and a serial packet link - 08Mar1988
• US-Pat-4758948  Microcomputer - INMOS 19Jul1988
• US-Pat-4783734  Computer with variable length process communication - INMOS 08Nov1988
• US-Pat-4811277  Communication interface - INMOS 07Mar1989
• US-Pat-4794526  Microcomputer with priority scheduling - INMOS 27Dec1988
• US-Pat-4811277  Communication interface - INMOS 07Mar1989
• US-Pat-4819151  Microcomputer  - INMOS 04Apr1989
• US-Pat-4885740  Digital signal switch - INMOS 05Dec1989
• US-Pat-4967326  Microcomputer building block_30Oct1990
• US-Pat-4989133  System for executing time dependent processes - INMOS 29Jan1991
• US-Pat-5031092  Microcomputer with RAM in separate isolation well - INMOS 09Jul1991

Origin of Pictures
• Original Chip Picture of T414 – from http://www.chilton-computing.org.uk
• Original Chip Picture of T805 – from www.tranputer.net � Pictures (thanks to Michael Brüstle)

Misc

• Ockham‘s Razor: http://www.seanparnell.com/Hyperion%20Cantos/Web%20Pages/Occam%27s%20Razor.htm
• INMOS History & pictures: http://www.inmos.com/
• home of real men's hardware: http://www.geekdot.com/
• Transputers can be fun: http://www.michaelp.org/transputer
• Ispy & Mtest: http://www.wizzy.com/wizzy/transputer.html



Appendix



Tech-Node / Clock

2.5-1.5µm / 10-20MHz 1.5-1.0µm / 20-30Mhz

����

1.0-0.8µm / 30-60Mhz 0.8-0.5µm / …133Mhz

http://www.computerhistory.org/microprocessors/

Dominant Processors

Personal-Computer:
• 16bit: Intel 8086+8087, 286+287, 

386SX

• 32bit: 386DX+387
• 32bit: Motorola 68020+68881

Embedded Market:
• 8bit: i8048, Z80, M680x
• 16bit: 68000

Minicomputers & Workstations:
• 32bit: Micro-Vax

Super-Computing:
• 32/64bit: CRAY-1 (1983) 

Vector Processor



����

http://www.computerhistory.org/microprocessors/

����
ST20450

0.8-0.5µm / …133Mhz1.0-0.8µm / 30-60Mhz

1.5-1.0µm / 20-30Mhz
Tech-Node / Clock

2.5-1.5µm / 10-20MHz

Dominant Processors

Personal-Computer:
• 32bit: 386DX+387, 486SX, 486DX
• 32bit: Motorola 68030+68040

Embedded Market:
• 8bit: i8049, Z180, M680x
• 16bit: 68000

• 32bit: (i960), T805

Minicomputers & Workstations:
• 32bit: i860, SUN-Sparc, MIPS
• 64bit: DEC-Alpha

Super-Computing:
• 32/64bit: CRAY X-MP (1989) 

Vector Processor
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2.2 Instruction Set
Opr Register during pfix # (1Clk)

#2

7     … 4   3     … 0

#1pfix #1

#0 #1#0 #0#0 #0#0 #0

7     … 4   3     … 031   … 28   27   … 24

#1 #0#0 #0#0 #0#0 #0

load Oreg

shift Oreg

#1 #A#0 #0#0 #0#0 #0

7     … 4   3     … 031   … 28   27   … 24

#A #0#0 #1#0 #0#0 #0

load Oreg

shift Oreg

#2 #Apfix #A

#A #5#0 #1#0 #0#0 #0

7     … 4   3     … 031   … 28   27   … 24

#A #5#0 #1#0 #0#0 #0

load Oreg

load Areg

#4 #5ldc #5

How to build a 32bit Constant or Address

The prefixx instruction loads its four data bits into the O register, and then shifts
the O register up four places. The negative prex instruction is similar, except that
it complements the operand register before shifting it up.

Consequently operands can be extended to any length up to the length of the
operand register by a sequence of prex instructions.

The prex functions can be used to extend the operand of an operate instruction
just like any other. The instruction representation therefore provides for an 
indenite number of operations. 

The encoding of operations is chosen so that the most common operations, such 
as add and greater than, are represented without a prex instruction.
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2.2 Instruction Set
Opr Register during nfix # (1Clk)

#2

7     … 4   3     … 0

#Anfix #A

#0 #A#0 #0#0 #0#0 #0

7     … 4   3     … 031   … 28   27   … 24

#F #5#F #F#F #F#F #F

load Oreg

negate Oreg

#5 #0#F #F#F #F#F #Fshift Oreg

#5 #D#F #F#F #F#F #F

7     … 4   3     … 031   … 28   27   … 24

#5 #D#F #F#F #F#F #F

load Oreg

load Areg

#4 #Dldc #D

How to build a 32bit Constant or Address

The prefixx instruction loads its four data bits into the O register, and then shifts
the O register up four places. The negative prex instruction is similar, except that
it complements the operand register before shifting it up.

Consequently operands can be extended to any length up to the length of the
operand register by a sequence of prex instructions.

The prex functions can be used to extend the operand of an operate instruction
just like any other. The instruction representation therefore provides for an 
indenite number of operations. 

The encoding of operations is chosen so that the most common operations, such 
as add and greater than, are represented without a prex instruction.



2.2 Instruction Set
1st OpCode Table

one Byte Operation Codes: 31   7     6   5     4   3     2   1     0   7     6   5     4   3     2   1     0        
n *

  7     6   5     4   3     2   1     0

or one Byte Instruction

0 1 2 3 4 5 6 7 8 9 A B C D E F
1st 

Nibble
Operation Cycles FctCode

2nd 
Nibble

Operation Cycles OpCode

0 j address relative to Iptr 0 jump 3 0 0 reverse 1 00

1 ldlp offset relative to Wptr 1 load local pointer 1 1 1 load byte 5 01

2 pfix operand 2 prefix 1 2 2 byte subscript 1 02

3 ldnl offset relative to Areg 3 load non-local 2 3 3 end process 13 03

4 ldc operand 4 load constant 1 4 4 difference 1 04

5 ldnlp offset relative to Areg 5 load non-local pointer 1 5 5 addition 1 05

6 nfix operand 6 negative prefix 1 6 6 general call 4 06

7 ldl offset relative to Wptr 7 load local 2 7 7 input message 2w+19 07

8 adc operand 8 add constant 1 8 8 product b+4 08

9 call address relative to Iptr 9 call 7 9 9 greater than 2 09

A cj address relative to Iptr A
cond. jump (not taken)

cond. jump (taken)
2
4

A A word subscript 2 0A

B ajw operand B adjust workspace 1 B B output message 2w+19 0B

C eqc operand C equals constant 2 C C subtraction 1 0C

D stl offset relative to Wptr D store local 1 D D start process 12 0D

E stnl offset relative to Areg E store non-local 2 E E output byte 23 0E

F opr rev lb bsub endp diff add gcall in prod gt wsub out sub start p
out 
byte

out 
word

F operate F F output word 23 0F

pfix Data Opr 1st Nib. Data

2 x x x

operate Opr 2nd Nib.

F x

2nd Nibble

1s
t N

ib
b

le



2.2 Instruction Set 
5th OpCode Table … example

two Byte Operation Codes: 16   7     6   5     4   3     2   1     0   7     6   5     4   3     2   1     0

0 1 2 3 4 5 6 7 8 9 A B C D E F
1st 

Nibble
Operation clk

1s
t.N

.

F opr shr shl mint alt altwt altend and enbt enbc enbs move or csn gl ccnt1 talt ldiff F operate

2nd 
Nibble

Operation Cycles OpCode

0 shift right 1 40
1 shift left 1 41
2 minimum integer 1 42
3 alt start 2 43

4 alt wait (channel not ready) 17* 44

5 alt end 4 45
6 and 1 46
7 enalbe timer 8 47
8 enable channel (ready) 7* 48
9 enable skip 3 49
A move message 2w+8 4A
B or 1 4B
C check single 3 4C
D check counter from 1 3 4D
E timer alt start 4 4E
F long diff 3 4F

2nd Nibble

2 4 F x

  pfix 4 operate Opr 2nd Nib.

OpCode Tables:
• one table for one Byte OpCodes
• 11 tables for 2 Byte OpCodes (#1x…#Bx)
• one table for 3 Byte OpCodes (#17x)

All togeter = 151 direct instructions
+16 indirect instructions (FPU only)



2.1 Hardware Details
CPU: Data-Paths

• 4 Phase Clock � 1 Clock Execution
• Data Path controlled by horizontal 

Microcode (~80 bit wide)
• X- and Y-Bus for operand transfer
• Z-Bus for result transfer and data

exchange with Link Channel DMA‘s or
reading the actual Timer value

• U-Bus to control (arbiter) the Z-Bus, i.e. 
either processor or DMA‘s can be master!

• RISC instructions, e.g. almost all ALU 
operations

• CISC instructions, e.g. all Scheduler
Operations, 2D Blok Move, …

For more HW details … see Patent List in Appendix.



2.1 Hardware Details
FPU

full IEEE-754 compatible single and double precision (64bit) FPU w/ 50 instructions

• All Arithmetic operations have been formally verified and proven
• Full parallel FP operation to integer CPU (e.g. address calculations)
• Note: no big hardware multiplier! But Silicon area vs speed optimized
• For 64bit: fmul 27 clocks, fdiv 43 clocks � ca. 1.5 MFLOPs @ 20MHz
For more internal details about FPU pls see [72-TCH-047-00] 
“The role of occam in the design of the IMS T800”, INMOS technical Notes, Sep88.



2.1 Hardware Details
Links: Data-Paths

Each Link has separate input logic and output logic, combined with own DMA. 
Therewith Link operation can be fully overlapped w/ CPU operation.
• U-Bus : Data-Bus and Address-Bus Arbitration (Link DMA vs CPU) 
• V-Bus , W-Bus : provides Source (input) or Destination (output) Address from

PtrReg via DataAddrReg (CPU) to Address-Bus
• Z-Bus : connects Link DBufReg via ChannelDataReg (CPU) to Data-Bus

(a) Link Transfer Rate nominal is 20Mbps (1,2MByte/s) for short distance direct
Transputer to Transputer connection.
In case of more than 30cm distance Fast-TTL buffering is recommended.

(b) For long distance connection (>20m up 1km) matching RS422 is used.
In case of larger distances the use of fiber optics is recommended.



2.4 System Services
onChip RAM + Mem-IF

• full programmable memory timing from 3 
to 6 T cycles (each 50ns) for dRAM
access times from 50…150ns 

• direct RAS / CAS signals
• Refresh control register in CPU

• for small outline TRAM design
• only few additional circuits needed:



4. Outlook
Transputer Target Applications

• Scientific and mathematical applications
• High speed multi processor systems
• High performance graphics processing
• Supercomputers
• Workstations and workstation clusters
• Digital signal processing
• Accelerator processors
• Distributed databases
• System simulation
• Telecommunications
• Robotics
• Fault tolerant systems
• Image processing
• Pattern recognition
• Artificial intelligence



4. Outlook
other Programming Languages

• Ada
• C
• C++

• Fortran
• Forth
• Java



4. Outlook
Transputer OS

• CHORUS (UNIX) System V
• Helios (UNIX), distributed OS, µKernel based („Nucleus“) � see next Page
• Idris (UNIX), POSIX compatible, User-IF running on one CPU only, distributed

Communication Kernels for Message Passing
• Trollius (UNIX), node based Kernel (same on each CPU), Lib. for Message

Passing
• TINIX 
• Virtuoso (UNIX), µKernel based (Nano-Kernel: Processes & Channels), available

for different Hardware Platforms: T8/T9, TMS320C30, MIPS, 68030, … x86



4. Outlook
OS: Helios

ParHelion GmbH:
• Helios (UNIX), distributed OS, µKernel based („Nucleus“), Client-Server Model, 

Message Passing, all resources are named Objects, e.g. Task Moving possible
(secure autentication), 
Nucleus consists of 4 components: 
– Kernel (Message Passing, Memory Mgmt), 
– System Lib (Sys Calls), 
– Loader (Code & Data Mgmt), 

– Processor Mngr (Task & I/O Mgmt)
• Memory requirements for µKernel ~ 1MB RAM, 4MB TRAM recommended.



4. Outlook
Transputer Networks

IMSC004

(1988)

CrossBar LinkSwitch
for 32x32 Channels

Transputer Grid … Router Network



4.Outlook
Standard Boards

IMB-PC Development & Accellerator Boards (ISA):

• B004 (1985) T414-15, 2MB RAM

• B008 (1987): up to 10x TRAM, 

VME Development Boards:
• B011 VME Master (1st Gen.)
• B016 VME Master (2nd Gen.)
• B014: up to 8x TRAM slave board


